Magister en Física Médica

Facultad de Física

Dra. María Daniela Cornejo se integra al grupo de Física Médica

dani2A partir de marzo, la física médica María Daniela Cornejo se unió a la Facultad para desarrollar la línea de investigación de corrección de ruido en Resonancia Magnética Funcional (fMRI por sus siglas en inglés). La investigadora realizó sus estudios de pregrado en la Universidad de Chile y luego obtuvo su doctorado en la Universidad de Wisconsin, en Madison, Estados Unidos.

Un resonador tiene la ventaja de no necesitar radiación ionizante para generar una imagen, por lo que su uso es considerado en la actualidad como más seguro que otras modalidades como Rayos X o Tomografía. Esto ha permitido el desarrollo de estudios multitudinarios, donde participan científicos, médicos, y también sus pacientes, alrededor de todo el mundo. Fascinada por la Física Médica y sus alcances, la línea de investigación desarrollada por la Dra. Cornejo es potenciar, a través de simulaciones y modelamientos matemáticos, el manejo de datos obtenidos de exámenes de fMRI, que usan el cerebro como modelo de estudio. 

 

"Me pareció impresionante colaborar con los grupos que quieren profundizar en el entendimiento de cómo funciona el cerebro con las nuevas tecnologías disponibles. En los primeros estudios de fMRI, ellos buscaban constatar cómo ciertas estructuras y sus redes de neuronas se activan al ver una imagen, un sonido, o incluso estímulos más sofisticados como una emoción o un recuerdo. A partir de experimentos como estos, se pueden plantear modelos más complejos para el funcionamiento del cerebro. Para poder hacer este ejercicio hay muchos desafíos técnicos, ya que, por ejemplo, cualquier movimiento de la persona en el resonador, incluso al respirar, genera "ruido" en el examen, distorsionando la señal. Entonces lo que yo hago como física, es modelar computacionalmente la señal, para finalmente eliminar la fuente de ruido. Lograrlo es difícil, pero cuando obtienes una señal clara y precisa, se evita la pérdida de recursos económicos y de datos valiosos. Luego, profesionales de otras disciplinas de la Neurociencia pueden utilizar la información como base en sus investigaciones sobre cómo funciona este órgano complejo", explica Daniela.  

 

Gracias a estos estudios internacionales se han hecho hallazgos sorprendentes. Por ejemplo, cuando los pacientes instalados en el resonador no son expuestos a ningún estímulo, se activaban redes neuronales propias del estado de reposo, y estas se apagan cuando las personas tienen que hacer una actividad cognitiva más elevada. Se cree en este estado se procesa y almacena información de forma inconsciente. Otro ejemplo, es que gracias a la fMRI se constató que las personas enfermas de depresión tienen más actividad en una red neuronal llamada "Default" asociada a la rememoración del pasado, lo que se ha interpretado como una constante necesidad del paciente enfermo de buscar un sentido en sus recuerdos, sin poder "apagar" esa conexión neuronal, comparado con personas sanas. 

 

La tecnología de los resonadores avanza año a año, lo que permite acceder a más datos, con mejor resolución. Actualmente, de un solo examen se obtienen 300 imágenes en 4D con una resolución temporal de 0.8 segundos y resolución espacial de 1-2 milímetros, dependiendo de la modalidad, esto supone nuevos desafíos a los físicos médicos, que deben reformular las estrategias de corrección de ruidos y modulación de la señal. 

 

"Mientras equipos interdisciplinarios están alrededor del mundo tratando de responder preguntas relevantes sobre nuestro cerebro, aumenta el volumen de datos segundo a segundo. Estos estudios han sido diseñados con muchos números de casos, con el objetivo de sacar conclusiones con rangos de confianza razonables. Para que estas sean válidas, se necesitan muchos más profesionales, como físicos médicos, capaces de hacer el modelamiento matemático sofisticado de los experimentos, para validar los resultados y avanzar en la investigación", explica la científica.